Gas Labyrinth Seals: Improved Prediction of Leakage in Gas Labyrinth Seals Using an Updated Kinetic Energy Carry-Over Coefficient

Author:

Wu Tingcheng1,Andrés Luis San2

Affiliation:

1. Senior Rotordynamic Engineer, Research & Development Technology Innovation, Siemens Energy Olean, NY 14760

2. Department of Mechanical Engineering, Texas A&M University, J. Mike Walker '66, College Station, TX 77843

Abstract

Abstract Though simple and fast, bulk-flow models (BFMs) for gas labyrinth seals (LSs) often predict the mass flow inaccurately. The BFM models rely on classical Neumann's equation model to characterize the flow through a labyrinth tooth. Presently, a computational fluid dynamics (CFD) analysis quantifies the effects of tip clearance (Cr) and operating conditions on the prediction of LS mass flow, and then derives an updated kinetic energy carry-over coefficient (μ1i) to improve the accuracy of Neumann's leakage equation. μ1i is a function of the seal tip clearance (Cr), the tooth pitch, and the total teeth number; but it does not depend on the seal supply or discharge pressures. The analysis selects a 14-teeth on stator LS (length/diameter = L/D = 0.29) with clearance Cr = (1/733)D and operating at nominal supply (Pin) and discharge (Pout) pressures equal to 73 bar and 51 bar, respectively, and at a rotor speed of 12 krpm (surface speed = 138 m/s). The CFD produces flow fields for LSs with a clearance varying from 80% to 200% of the nominal Cr, a gas supply pressure from 60 bar to 100 bar, and with various discharge pressures giving a pressure ratio (PR = Pout/Pin) ranging from 0.40 to 0.85. The numerous predictions deliver the mass flow as well as the bulk-flow velocities and cavity pressures within the seals. The kinetic energy carry-over coefficient (μ1i) increases with respect to the seal radial clearance (Cr). μ1i shows a parabolic correlation with PR; at first, μ1i increases with a rise in PR from a low value; and then, a further increase in PR leads to a decrease in μ1i. The coefficient μ1i is only sensitive to the PR and not to the magnitude of either the supply or discharge pressures. Lastly, for use with Neumann's leakage model, the CFD predictions produce an updated μ1i, a function of the seal geometry and the PR condition. Integration of the new μ1i correlation into a BFM code improves its accuracy to predict LS mass flow rate, a 19% difference against test data reduces to within 6%. A TOS LS tested by Ertas et al. (2012, Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio,” ASME J. Eng. Gas Turbine Power, 134(4), p. 4250301) serves to further validate the accuracy of the modified leakage model.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference29 articles.

1. Rotordynamic Models for Annular Gas Seals,1993

2. Labyrinth Packings;Engineering,1908

3. The Leakage of Steam Through Labyrinth Seals;Trans. ASME,1935

4. Estimation of the Leakage Through a Labyrinth Gland;Proc. Inst. Mech. Eng.,1939

5. Zur Frage Der Verwendung Von Durchblickdichtungen im Dampfturbinenbau;Maschinenbautechnik,1964

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3