Affiliation:
1. Mechanical Engineering Department, Texas A&M University, College Station, Texas 77843
Abstract
Derivation of the governing equations for compressible flow in a tapered annular seal is based on Hirs’ turbulent bulk-flow model. Zeroth and first-order perturbation equations are developed by an expansion in the eccentricity ratio. These equations are numerically integrated to obtain the leakage, and the direct and cross-coupled stiffness and damping coefficients. Seal parameters similar to the Space Shuttle Main Engine High Pressure Oxidizer Turbopump are used to demonstrate output from the analysis procedure. The effects of preswirl and seal taper are shown for three different length-to-diameter ratios. Generally the results indicate that prerotating the fluid significantly increases the cross-coupled stiffness but has little effect on the other coefficients, and increasing the convergent taper increases the direct stiffness while decreasing the direct damping and cross-coupled stiffness.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献