Impingement Heat Transfer From Jet Arrays on Turbulated Target Walls at Large Reynolds Numbers

Author:

Mhetras Shantanu1,Han Je-Chin2,Huth Michael3

Affiliation:

1. Siemens Energy, Inc., 5101 Westinghouse Boulevard, Charlotte, NC 28273

2. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:

3. Siemens AG, Mellinghofer Street 55, Muelheim an der Ruhr 45473, Germany

Abstract

Experiments to investigate heat transfer and pressure loss from jet array impingement are performed on the target wall at high Reynolds numbers. Reynolds numbers up to 450,000 are tested. The presence of a turbulated target wall and its effect on heat transfer enhancement against a smooth surface is investigated. Two different jet plate configurations are used with closely spaced holes and with angled as well as normal impingement holes. The test section cross-section is designed to expand along the streamwise direction maintaining the jet plate to target wall distance in order to reduce cross-flow effects. The jet plate holes are chamfered or filleted to minimize pressure loss through the jet plate. Heat transfer and pressure loss measurements are performed on a smooth target wall as well as turbulated target walls. Three turbulators configurations are used with streamwise riblets, short pins, and spherical dimples. A steady-state heat transfer measurement method is used to obtain the heat transfer coefficients while pressure taps located in the plenum and at several streamwise locations are used to record the pressure losses across the jet plate. Experiments are performed for a range of Reynolds numbers from 50,000 to 450,000 based on average jet hole diameters to cover the incompressible as well as compressible flow regimes. A target wall with short pins provides the best heat transfer with the dimpled target wall giving the lowest heat transfer among the three turbulators geometries studied. Addition of turbulators though does not significantly increase the pressure losses in the test section over the smooth target wall.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3