Affiliation:
1. Faculty of Engineering, Mechanical Engineering Department, Sakarya University, Sakarya 54050, Turkey
2. Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Department of Electricity and Energy, Tarsus University , Mersin 33100, Turkey
Abstract
Abstract
In a jet impingement cooling (JIC) system, the layout of the target surface and length of the jet holes can change both the flow field and the heat transfer characteristics. Elliptical-shaped pins (ESPs) with different heights and layouts on the target surface of the extended jet hole configurations were examined numerically in a jet impingement system. The ESPs were arranged in a staggered and circular form. Normalized nozzle length (Gj/Dj = 1.0, 2.0, 6.0) and normalized pin height (Hp/Dj = 0, 0.167, 0.417, 0.667) were investigated as geometric parameters. Also, the effect of different pin layouts (R1, R2, R3) on heat transfer dissipation was studied by changing the number of pin rows in particular configurations. A numerical model was developed and verified with experimental and numerical data from the literature. Numerical analyses were conducted with the shear stress transport (SST) k–ω turbulence model taking the boundary conditions into account under turbulent flow conditions (16,250 ≤ Re ≤ 32,500). Nusselt (Nu) numbers, pressure drop, and the thermo-hydraulic performance of the physical model were quantitatively researched to elucidate the underlying mechanisms of enhanced heat transfer by the ESPs. Results were compared with the orifice surface (Hp/Dj = 0 and Gj/Dj = 6.0). Results showed that area-averaged Nu number on the target wall increased up to 35.82% for Re = 16,250 by R2_Gj/Dj = 1.0 and Hp/Dj = 0.167 compared to the conventional JIC system. The performance evaluation criterion (PEC) was used to analyze the thermo-hydraulic performance of the examined physical models. According to the PEC values, the most feasible parameters for all Re numbers were R3_Gj/Dj = 1.0 and Hp/Dj = 0.167. Furthermore, increasing the number of pin rows in the channel also increased the uniformity of the local heat transfer distribution according to Nu contours.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献