Effect of Strip-Fin Height on Jet Impingement Heat Transfer in a Rectangular Channel at Two Jet-to-Target Surface Spacings

Author:

Alzahrani Yasser S.1,Wright Lesley M.1,Han Je-Chin1

Affiliation:

1. Turbine Heat Transfer Laboratory, Mechanical Engineering Department, Texas A&M University , College Station, TX 77843-3123

Abstract

Abstract An experimental investigation of heat transfer performance in a rectangular impingement channel featuring staggered strip-fins was completed. Four configurations were considered to study the effects of varying the strip-fin height (H/d = 1.5 and 2.75) at two jet-to-target surface spacings (z/d = 3 and 6) on the heat transfer, pressure loss, and crossflow magnitude for a long impingement channel with in-line, 4 × 12 impinging jets. Also, the effect of the reference temperature choice, either jet inlet temperature or local bulk temperature, for calculating the local heat transfer coefficients was considered. The regionally averaged heat transfer coefficients were measured at seven Reynolds numbers, based on the jet diameter (10k–70k) utilizing the copper plate experimental method. The empirical correlations were expressed for the area averaged Nusselt number estimation of impingement channels with strip-fin or pin-fin roughness elements. The results showed that the long strip-fin channel with z/d = 3 provided the best thermal performance. The discharge coefficients are similar for all configurations between Rejet = 10k and 50k. The results are compared with the impingement channels with conventional pin-fins. They show that strip-fin channels provide lower pressure drop with marginally better heat transfer coefficients compared to the conventional pin-fin channels. However, when the channel weight is considered, strip-fins would increase the roughness material volume more than the conventional pin-fins.

Publisher

ASME International

Reference26 articles.

1. Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow;ASME J. Heat Mass Transfer Trans. ASME,1981

2. Detailed Heat Transfer Coefficient Distributions Under an Array of Inclined Impinging Jets Using a Transient Liquid Crystal Technique

3. Impingement Heat Transfer on a Cylindrical, Concave Surface With Varying Jet Geometries;ASME J. Heat Mass Transfer-Trans. ASME,2016

4. Effect of Impingement Supply Condition on Leading Edge Heat Transfer With Rounded Impinging Jets,2012

5. Leading Edge Impingement With Racetrack-Shaped Jets and Varying Inlet Supply Conditions,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3