Fabrication of Hybrid Surface Composites AA6061/(B4C + MoS2) via Friction Stir Processing

Author:

Sharma Daulat Kumar1,Patel Vivek23,Badheka Vishvesh3,Mehta Krunal3,Upadhyay Gautam4

Affiliation:

1. Department of Metallurgy, Gujarat Technological University, Ahmedabad 382424, Gujarat, India e-mail:

2. School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi, China;

3. Department of Mechanical Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat, India e-mail:

4. Department of Metallurgy, Gujarat Technological University, Ahmedabad 382424, Gujarat, India

Abstract

Poor tribological properties restrict structural applications of aluminum alloys and surface composites of aluminum alloys have gained more attention in material processing. The addition of solid lubricant reinforcement particles along with abrasive ceramics contributes to the enhancement of tribological performance of surface composites. In the present study, the solid-state technique, friction stir processing (FSP) was used to develop mono (B4C) and hybrid (B4C + MoS2) surface composites in the AA6061-T651 aluminum alloy. The hybrid surface composites were produced by varying an amount of MoS2. Multipass FSP with different direction strategies was adopted for achieving uniform distribution of reinforcement powders in the aluminum matrix. Microstructure analysis showed a uniform dispersal of reinforcement particles without any clustering or agglomeration in the processing zone. Microhardness and wear performance of mono and hybrid composites improved in comparison with the base metal. The mono surface composite exhibited the highest hardness while the hybrid surface composite (75%B4C + 25%MoS2) achieved the highest wear resistance. This was attributed to the solid lubricant nature of MoS2. Furthermore, dissolution of the strengthening precipitate condition during multipass FSP without reinforcement particles resulted in the reduction of hardness and wear resistance.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3