Wear Characteristics of Friction Stir Processed Magnesium RZ 5 Composites

Author:

Vedabouriswaran G.1,Aravindan S.2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, Delhi 110 016, India

2. Department of Mechanical Engineering, Indian Institute of Technology Delhi, Delhi 110 016, India e-mail:

Abstract

Friction stir processing is performed on RZ 5 Mg alloy to produce surface metal matrix composites reinforced with hard reinforcement particles. Boron carbide, multiwalled carbon nanotubes, and a mixture of zirconia and alumina particle reinforcements were introduced. The developed surface composites (SCs) exhibited lower wear rates at various normal loads than the base RZ 5 Mg alloy owing to their improved microhardness. The wear resistance of the composites was 1.2–1.9 times greater than the base alloy, and hence, the wear rates were 18–50% lower than the base alloy. Maximum reduction in wear rate is observed in B4C-reinforced SC. Abrasion, adhesion, and oxidative wear mechanisms are operational during the wear test performed at loads ranging between 10 N and 75 N.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3