Microstructure, hardness and wear behavior of ZrC particle reinforced AZ31 surface composites synthesized via friction stir processing

Author:

Kumar T. Satish,Thankachan Titus,Shalini S.,Čep Robert,Kalita Kanak

Abstract

AbstractDry sliding wear behaviour of friction stir processed (FSP) AZ31 and AZ31/ZrC particles (5, 10, and 15 vol%) reinforced surface composite was investigated at different sliding speeds and loads. The samples were tested using a pin-on-disc apparatus with EN31 steel as the counter body to determine the role of FSP and ZrC reinforcement on the microstructure, hardness, and wear behaviour of AZ31. Base metal AZ31 alloy exhibits a hardness of 60 HV, whereas the 15 vol% ZrC-reinforced composites had the highest hardness of 108 HV. It was also identified that 15 vol% ZrC-reinforced composites exhibited lowest wear rate and friction coefficient under all testing conditions. Abrasion, delamination, oxidation, material softening, and plastic deformation are the primary wear mechanisms viewed from the wear tracks of the samples. Higher volume fraction of ZrC particles exhibited better wear resistance at all speeds and loads than AZ31 alloy. A wear map has been generated for different material compositions and wear conditions to identify the main wear mechanisms easily.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3