Short-Term Cross-Sectional Time-Series Wear Prediction by Deep Learning Approaches

Author:

Nugraha Renaldy Dwi1,He Ke1,Liu Ang2,Zhang Zhinan1

Affiliation:

1. Shanghai Jiao Tong University State Key Laboratory of Mechanical, System and Vibration, School of Mechanical Engineering, , Shanghai 200240 , China

2. University of New South Wales School of Mechanical, and Manufacturing Engineering, , Sydney, NSW 2052 , Australia

Abstract

Abstract Wear is one of the major causes that affect the performance and reliability of tribo-systems. To mitigate its adverse effects, it is necessary to monitor the wear progress so that preventive maintenance can be timely scheduled. An online visual ferrograph (OLVF) apparatus is used to obtain online measurements of wear particle quantities, and monitor the wearing of a four-ball tribometer under different lubrication conditions, and several popular deep learning algorithms are evaluated for their effectiveness in providing maintenance decisions. The obtained data are converted to the cross-sectional time series (CSTS), for its effectiveness in representing the variation trends of multiple variables, and the data are used as the input to the deep learning algorithms. Experimental results indicate that the CSTS together with the bidirectional long short-term memory (Bi-LSTM) architecture outperforms other tested settings in terms of the mean-squared error (MSE). Increased prediction accuracy is observed for tribological pairs with a stochastically changing coefficient of friction.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3