Surface and Shape Deposition Manufacturing for the Fabrication of a Curved Surface Gripper

Author:

Suresh Srinivasan A.1,Christensen David L.1,Hawkes Elliot W.1,Cutkosky Mark1

Affiliation:

1. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 e-mail:

Abstract

Biological systems such as the gecko are complex, involving a wide variety of materials and length scales. Bio-inspired robotic systems seek to emulate this complexity, leading to manufacturing challenges. A new design for a membrane-based gripper for curved surfaces requires the inclusion of microscale features, macroscale structural elements, electrically patterned thin films, and both soft and hard materials. Surface and shape deposition manufacturing (S2DM) is introduced as a process that can create parts with multiple materials, as well as integrated thin films and microtextures. It combines SDM techniques, laser cutting and patterning, and a new texturing technique, surface microsculpting. The process allows for precise registration of sequential additive/subtractive manufacturing steps. S2DM is demonstrated with the manufacture of a gripper that picks up common objects using a gecko-inspired adhesive. The process can be extended to other integrated robotic components that benefit from the integration of textures, thin films, and multiple materials.

Publisher

ASME International

Subject

Mechanical Engineering

Reference22 articles.

1. Recent Advances in Gecko Adhesion and Friction Mechanisms and Development of Gecko-Inspired Dry Adhesive Surfaces;Friction,2013

2. Gecko Adhesion Bibliography,2014

3. A Review of Focused Ion Beam Applications in Microsystem Technology;J. Micromech. Microeng.,2001

4. Review: Developments in Micro/Nanoscale Fabrication by Focused Ion Beams;Vacuum,2012

5. Two-Photon Stereolithography for Realizing Ultraprecise Three-Dimensional Nano/Microdevices;Laser Photonics Rev.,2009

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3