Investigations of the Adhesive Contact Behavior of Elastic Layered Media With Surface Roughness

Author:

Zhang Yuyan1,Si Lina2,Zhang Xiaoqing3,Li Juan4,Wang Wanjun4

Affiliation:

1. Department of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China e-mail:

2. Department of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China

3. Department of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China

4. Department of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

A deterministic adhesive model for the contact between an elastic layered medium with surface roughness and a smooth elastic microsphere was developed on the basis of the Lennard–Jones surface force law. Through numerical simulations, the adhesive contact behavior of the layered medium with the measured three-dimensional (3D) surface topography was comparatively analyzed with that of the homogeneous medium. Furthermore, the contact characteristics of the layered medium with pre-assigned roughness parameters were investigated with the aid of a computer-generated technique for simulating surface roughness. Results showed that the pull-off force for the contact problem involving rough surfaces was influenced by the contact location, and the average value for the contact between an alumina (SiO2) microsphere and a diamond-like carbon/silicon (DLC/Si)-layered medium was smaller than that for the contact between a SiO2 microsphere and a Si homogeneous half-space. In addition, the effect of the diamond-like carbon (DLC) layer on reducing adhesion was smaller than that of the surface roughness. Finally, the average pull-off force for a DLC/Si-layered medium with computer-generated surface roughness rapidly decreased; however, it eventually became almost unchangeable with the increase in the root-mean-square (RMS) deviation.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3