Abstract
Microtransfer printing is a sophisticated technique for the heterogeneous integration of separately fabricated micro/nano-elements into functional systems by virtue of an elastomeric stamp. One important factor influencing the capability of this technique depends on the adhesion between the viscoelastic stamp and the transferred element. To provide theoretical guidance for the control of adhesion in the transfer printing process, a finite element model for the viscoelastic adhesive contact between a polydimethylsiloxane (PDMS) stamp and a spherical transferred element was established, in which the adhesive interaction was modeled by the Lennard-Jones surface force law. Effects of the unloading velocity, preload, and thermodynamic work of adhesion on the adhesion strength, characterized by the pull-off force, were examined for a loading-dwelling-unloading history. Simulation results showed that the unloading path deviated from the loading path due to the viscoelastic property of the PDMS stamp. The pull-off force increased with the unloading velocity, and the increasing ratio was large at first and then became low. Furthermore, the influence of the preload on increasing the pull-off force was more significant under larger unloading velocity than that under smaller unloading velocity. In addition, the pull-off force increased remarkably with the thermodynamic work of adhesion at a fixed maximum approach.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献