Flow Physics of Diffused-Exit Film Cooling Holes Fed by Internal Crossflow

Author:

McClintic John W.1,Fox Dale W.1,Jones Fraser B.1,Bogard David G.1,Dyson Thomas E.2,Webster Zachary D.3

Affiliation:

1. Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX 78712 e-mail:

2. GE Global Research Center, 1 Research Circle, Schenectady, NY 12309 e-mail:

3. GE Aviation, 1 Neumann Way, Cincinnati, OH 45125 e-mail:

Abstract

Internal crossflow, or internal flow that is perpendicular to the overflowing mainstream, reduces film cooling effectiveness by disrupting the diffusion of coolant at the exit of axial shaped holes. Previous experimental investigations have shown that internal crossflow causes the coolant to bias toward one side of the diffuser and that the severity of the biasing scales with the inlet velocity ratio, VRi, or the ratio of crossflow velocity to the jet velocity in the metering section of the hole. It has been hypothesized and computationally predicted that internal crossflow produces an asymmetric swirling flow within the hole that causes the coolant to bias in the diffuser and that biasing contributes to ingestion of hot mainstream gas into the hole, which is undesirable. However, there are no experimental measurements as of yet to confirm these predictions. In the present study, in- and near-hole flow field and thermal field measurements were performed to investigate the flow structures and mainstream ingestion for a standard axial shaped hole fed by internal crossflow. Three different inlet velocity ratios of VRi = 0.24, 0.36, and 0.71 were tested at varying injection rates. Measurements were made in planes normal to the nominal direction of coolant flow at the outlet plane of the hole and at two downstream locations—x/d = 0 and 5. The predicted swirling structure was observed for the highest inlet velocity ratio and flow within the hole was shown to scale with VRi. Ingestion within the diffuser was significant and also scaled with VRi. Downstream flow and thermal fields showed that increased biasing contributed to more severe jet detachment and coolant dispersion away from the surface.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3