Printability and Overall Cooling Performance of Additively Manufactured Holes With Inlet and Exit Rounding

Author:

Veley Emma M.1,Thole Karen A.1,Furgeson Michael T.2,Bogard David G.2

Affiliation:

1. The Pennsylvania State University Department of Mechanical Engineering, , State College, PA 16801

2. University of Texas at Austin Department of Mechanical Engineering, , Austin, TX 78712

Abstract

Abstract To improve cooling effectiveness of gas turbine hardware, various film cooling hole shapes have previously been researched. Unique design modifications have recently been made possible through the design freedom allotted by additive manufacturing (AM). As one example, creating a rounded inlet for a film-cooling hole can mitigate separation at the inlet. This study explores various geometric features by exploiting the uses of additive manufacturing for shaped film cooling holes at engine scale. Both printability and cooling performance were evaluated. Resulting from this study, additively manufactured holes with hole inlet and exit rounding were printed with some variations from the design intent (DI). The largest deviations from the design intent occurred from dross roughness features located on the leeward side of the hole inlet. The measured overall effectiveness indicated that an as-built inlet fillet decreased in-hole convection as well as decreased jet mixing compared to the as-built sharp inlet. Including an exit fillet, which prevented an overbuilt diffuser exit, was also found to decrease jet mixing. A particular insight gained from this study is the importance of the convective cooling within the hole to the overall cooling performance. In-hole roughness, which is a result of additive manufacturing, increased convective cooling within the holes but also increased jet mixing as the coolant exited the hole. The increased jet mixing caused low overall effectiveness downstream of injection.

Funder

U.S. Department of Energy

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooling performance of film-cooling holes fed by channels of various shapes;International Journal of Heat and Mass Transfer;2023-12

2. The Effects of Channel Supplies on Overall Film-Cooling Effectiveness;Journal of Turbomachinery;2023-11-16

3. Optimizing the trench shaped film cooling design;International Journal of Heat and Mass Transfer;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3