Performance of Public Film Cooling Geometries Produced Through Additive Manufacturing

Author:

Snyder Jacob C.1,Thole Karen A.2

Affiliation:

1. Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16801

2. Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802

Abstract

Abstract Film cooling is an essential cooling technology to allow modern gas turbines to operate at high temperatures. For years, researchers in this community have worked to improve the effectiveness of film cooling configurations by maximizing the coolant coverage and minimizing the heat flux from the hot gas into the part. Working toward this goal has generated many promising film cooling concepts with unique shapes and configurations. However, until recently, many of these designs were challenging to manufacture in actual turbine hardware due to limitations with legacy manufacturing methods. Now, with the advances in additive manufacturing, it is possible to create turbine parts using high-temperature nickel alloys that feature detailed and unique geometry features. Armed with this new manufacturing power, this study aims to build and test the promising designs from the public literature that were previously difficult or impossible to implement. In this study, different cooling hole designs were manufactured in test coupons using a laser powder bed fusion process. Each nickel alloy coupon featured a single row of engine scale cooling holes, fed by a microchannel. To evaluate performance, the overall cooling effectiveness of each coupon was measured using a matched Biot test at engine relevant conditions. The results showed that certain hole shapes are better suited for additive manufacturing than others and that the manufacturing process can cause significant deviations from the performance reported in the literature.

Funder

U.S. Department of Energy National Energy Technology Laboratory

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental study on transpiration cooling through additively manufactured porous structures;International Journal of Heat and Mass Transfer;2024-08

2. Cooling performance of film-cooling holes fed by channels of various shapes;International Journal of Heat and Mass Transfer;2023-12

3. The Effects of Channel Supplies on Overall Film-Cooling Effectiveness;Journal of Turbomachinery;2023-11-16

4. Fatigue fracture characterization of chemically post-processed electron beam powder bed fusion Ti–6Al–4V;International Journal of Fatigue;2023-07

5. Advanced Gas Turbine Cooling for the Carbon-Neutral Era;International Journal of Turbomachinery, Propulsion and Power;2023-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3