Effectiveness Measurements of Additively Manufactured Film Cooling Holes

Author:

Stimpson Curtis K.1,Snyder Jacob C.1,Thole Karen A.2,Mongillo Dominic3

Affiliation:

1. Mem. ASME Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 3127 Research Drive, State College, PA 16801 e-mail:

2. Mem. ASME Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 136 Reber Building, University Park, PA 16802 e-mail:

3. Pratt & Whitney, 400 Main Street, East Hartford, CT 06118 e-mail:

Abstract

As additive manufacturing (AM) technologies utilizing metal powders continue to mature, the usage of AM parts in gas turbine engines will increase. Current metal AM technologies produce parts with substantial surface roughness that can only be removed from external surfaces and internal surfaces that are accessible for smoothing. Difficulties arise in making smooth the surfaces of small internal channels, which means the augmentation of pressure loss and heat transfer due to roughness must be accounted for in the design. As gas turbine manufacturers have only recently adopted metal AM technologies, much remains to be examined before the full impacts of applying AM to turbine parts are understood. Although discrete film cooling holes have been extensively studied for decades, this objective of this study was to understand how the roughness of film cooling holes made using AM can affect the overall cooling effectiveness. Coupons made from a high temperature nickel alloy with engine-scale film holes were tested in a rig designed to simulate engine relevant conditions. Two different hole sizes and two different build directions were examined at various blowing ratios. Results showed that the effectiveness is dependent on the build direction and the relative size of the hole. It was also discovered that commercially available AM processes could not reliably produce small holes with predictable behavior.

Funder

Pratt & Whitney

Publisher

ASME International

Subject

Mechanical Engineering

Reference26 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooling performance of film-cooling holes fed by channels of various shapes;International Journal of Heat and Mass Transfer;2023-12

2. The Effects of Channel Supplies on Overall Film-Cooling Effectiveness;Journal of Turbomachinery;2023-11-16

3. Optimizing the trench shaped film cooling design;International Journal of Heat and Mass Transfer;2023-11

4. Variability in additively manufactured turbine cooling features;Journal of the Global Power and Propulsion Society;2023-07-27

5. Advanced Gas Turbine Cooling for the Carbon-Neutral Era;International Journal of Turbomachinery, Propulsion and Power;2023-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3