Implementing Artificial Intelligence in Predicting Metrics for Characterizing Laser Propagation in Atmospheric Turbulence

Author:

Lozano Jimenez Diego Alberto1,Kotteda V. M.Krushnarao2,Kumar Vinod1,Gudimetla V. S. Rao3

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968 e-mail:

2. Department of Mechanical Engineering, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 e-mail:

3. Directed Energy Directorate, The Air Force Research Laboratory, Kihei, HI 96753 e-mail:

Abstract

The effects of a laser beam propagating through atmospheric turbulence are investigated using the phase screen approach. Turbulence effects are modeled by the Kolmogorov description of the energy cascade theory, and outer scale effect is implemented by the von Kármán refractive power spectral density. In this study, we analyze a plane wave propagating through varying atmospheric horizontal paths. An important consideration for the laser beam propagation of long distances is the random variations in the refractive index due to atmospheric turbulence. To characterize the random behavior, statistical analysis of the phase data and related metrics are examined at the output signal. We train three different machine learning algorithms in tensorflow library with the data at varying propagation lengths, outer scale lengths, and levels of turbulence intensity to predict statistical parameters that describe the atmospheric turbulence effects on laser propagation. tensorflow is an interface for demonstrating machine learning algorithms and an implementation for executing such algorithms on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets to large-scale distributed systems and thousands of computational devices such as GPU cards. The library contains a wide variety of algorithms including training and inference algorithms for deep neural network models. Therefore, it has been used for deploying machine learning systems in many fields including speech recognition, computer vision, natural language processing, and text mining.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3