Application of Deep Learning Algorithms to Visual Communication Courses

Author:

Wang Zewen,Li Jiayi,Wu Jieting,Xu Hui

Abstract

There are rare studies on the combination of visual communication courses and image style transfer. Nevertheless, such a combination can make students understand the difference in perception brought by image styles more vividly. Therefore, a collaborative application is reported here combining visual communication courses and image style transfer. First, the visual communication courses are sorted out to obtain the relationship between them and image style transfer. Then, a style transfer method based on deep learning is designed, and a fast transfer network is introduced. Moreover, the image rendering is accelerated by separating training and execution. Besides, a fast style conversion network is constructed based on TensorFlow, and a style model is obtained after training. Finally, six types of images are selected from the Google Gallery for the conversion of image style, including landscape images, architectural images, character images, animal images, cartoon images, and hand-painted images. The style transfer method achieves excellent effects on the whole image besides the part hard to be rendered. Furthermore, the increase in iterations of the image style transfer network alleviates lack of image content and image style. The image style transfer method reported here can quickly transmit image style in less than 1 s and realize real-time image style transmission. Besides, this method effectively improves the stylization effect and image quality during the image style conversion. The proposed style transfer system can increase students’ understanding of different artistic styles in visual communication courses, thereby improving the learning efficiency of students.

Publisher

Frontiers Media SA

Subject

General Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence System Based on Visual Communication Using Convolutional Auto-Encoder and Convolutional Neural Network;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3