Experimental and Numerical Investigation on Flow Characteristics of Large Cross-Sectional Ionic Wind Pump With Multiple Needles-to-Mesh Electrode

Author:

Zhang J. F.1,Wang S.1,Zeng M. J.1,Qu Z. G.2

Affiliation:

1. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Power and Energy Engineering, Xi'an Jiaotong University, Xi'an 710049, China

2. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Power and Energy Engineering, Xi'an Jiaotong University, Xi'an 710049, China e-mail:

Abstract

Ionic wind pumps have attracted considerable interest because of their low energy consumption, compact structures, flexible designs, and lack of moving parts. However, large cross-sectional ionic wind pumps have yet to be numerically analyzed and experimentally optimized. Accordingly, this study develops a large cross-sectional ionic wind pump with multiple needles-to-mesh electrode, as well as analyzes its flow characteristics using a proposed full three-dimensional simulation method validated with experimental data. To obtain a considerably high outlet average velocity, experimental studies and numerical methods are employed to optimize the pump's configuration parameters, including needle electrode configuration, needle diameter, grid size, and gap between electrodes. The breakdown voltage and highest velocity corresponding to the breakdown voltage increase with an increase in the needle tip-to-mesh gap. After parametric optimization, a maximum velocity of 2.55 m/s and a flow rate of 2868 L/min are achieved.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3