Strain Rate and Temperature Effects in Nanoindentation Testing on Hardness in Selective Laser Melting IN718

Author:

Abo Znemah Reem1,Voyiadjis George Z.1,Wood Paul2,Akbari Edris1

Affiliation:

1. Computational Solid Mechanics Laboratory; Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803

2. Institute of Innovation in Sustainable, Engineering (IISE);, College of Science and Engineering, University of Derby, Derby, DE22 1GB, UK

Abstract

Abstract The microstructure and mechanical hardness of Inconel 718 (INC718) hexagonal honeycomb cellular structure manufactured by selective laser melting (SLM) was studied in this work. Non-heat-treated SLM-produced samples with cell wall thicknesses of 0.4, 0.6, and 0.8 mm were studied. The hardness was measured using MTS Nanoindenter at different temperatures and strain rates. At room temperature, continuous hardness measurements through a penetration depth of 2 µm using three different strain rates (0.02, 0.05, and 0.08 s−1) were performed. At the temperatures 100 and 200 °C, single hardness measurements at eight different maximum loads were performed. Using scanning ion microscopy (SIM), the grain size was found to change significantly as the cell wall thickness reduced from 0.6 mm to 0.4 mm compared to the change from 0.8 mm to 0.6 mm. A similar trend in mechanical hardness reduction was observed in the three samples. The microstructure, hardness, and strain rate sensitivity displayed anisotropy in properties between the planes parallel and perpendicular to the build direction. A model describing the temperature, strain rate, and indentation size effects on hardness developed by the second author was modified and used to evaluate the intrinsic material length scale used in gradient plasticity theory.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3