Effect of laser power on the forming quality of Al6061 alloy manufactured via selective laser melting

Author:

Li Chenglong1ORCID,Wu Meiping12ORCID,Duan Weipeng1ORCID,Ma Yiqing1ORCID,Liu Huijun1,Miao Xiaojin12ORCID

Affiliation:

1. School of Mechanical Engineering, Jiangnan University, Wuxi, P.R. China

2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, PR China

Abstract

A systematic work was studied to illustrate the influence of laser power on the forming quality of Al6061 alloy by selective laser melting (SLM). The relationship between laser power and molten pool was simulated by finite element analysis (FEA). Phase composition, defects, and microhardness were also measured and analyzed. The results show that, with the increase of laser power, the molten pool gradually changes from rectangular shape to droplet shape. And the cooling rate gradually increases from 3.282 × 104°C/s to 5.189 × 104°C/s. Higher laser power (400 W) is accompanied by higher molten pool maximum temperature (2012.73°C). This may lead to larger temperature gradient inside the sample causing evaporation and spatter of powder. On the contrary, lower laser power leads to unmelt of some powders, which increases the number of pore defects and influences the forming quality of samples. X-ray diffractogram (XRD) displays the Al6061 alloy characterized by the obvious preferred orientation under different laser powers and the grain size increased from 32.57 nm to 35.38 nm. With the increase of laser power, the number of defects, especially holes and microcracks, was first decreased and then increased. However, the microhardness of the sample decreased almost linearly from 98.6 HV0.05 to 88.86 HV0.05. All changes are the result of the comprehensive action of laser power and molten pool state. Besides, the action mechanism of laser power on the forming quality was also clarified in this work.

Funder

the Fundamental Research Funds for the Central Universities

the Project of Team of National Defense Science and Technology Innovation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3