Abstract
This paper investigates the orientation-dependent characteristics of pure zinc under localized loading using nanoindentation experiments and crystal plasticity finite element (CPFEM) simulations. Nanoindentation experiments on different grain orientations exhibited distinct load–depth responses. Atomic force microscopy revealed two-fold unsymmetrical material pile-up patterns. Obtaining crystal plasticity model parameters usually requires time-consuming micromechanical tests. Inverse analysis using experimental and simulated loading–unloading nanoindentation curves of individual grains is commonly used, however the solution to the inverse identification problem is not necessarily unique. In this study, an approach is presented allowing the identification of CPFEM constitutive parameters from nanoindentation curves and residual topographies. The proposed approach combines the response surface methodology together with a genetic algorithm to determine an optimal set of parameters. The CPFEM simulations corroborate with measured nanoindentation curves and residual profiles and reveal the evolution of deformation activity underneath the indenter.
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献