Comparison Between the Hyperelastic Behavior of Fresh and Frozen Equine Articular Cartilage in Various Joints

Author:

Lee Hyeon1,Campbell William D.2,Theis Kelcie M.3,Canning Margaret E.4,Ennis Hannah Y.4,Jackson Robert L.2,Hanson R. Reid4

Affiliation:

1. Department of Mechanical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849; Department of Mechanical Engineering, Virginia Tech, 460 Old Turner Street (MC 0710), 100S Randolph Hall, Blacksburg, VA 24061

2. Department of Mechanical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849

3. Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849

4. Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn 36849, AL

Abstract

Abstract Fresh and frozen cartilage samples of the fetlock, carpus, and stifle were collected from 12 deceased horses. Half were measured immediately following extraction, and half were frozen for seven days and then measured. Seven indentations (various normalized displacements) were implemented with an indention rate of 0.1 mm/s. Solid phase aggregate modulus (Es), hyperelastic material constant (α), and fluid load fraction (F′) of equine articular cartilage were assessed using the Ogden hyperelastic model. The properties were statistically compared in various joints (fetlock, carpus, and stifle), and between fresh and frozen samples using various statistical models. There was no statistical difference between the fetlock and carpus in the aggregate modulus (p = 0.5084), while both were significantly different from the stifle (fetlock: p = 0.0017 and carpus: p = 0.0406). For the hyperelastic material constant, no statistical differences between joints were observed (p = 0.3310). For the fluid load fraction, the fetlock and stifle comparison showed a difference (p = 0.0333), while the carpus was not different from the fetlock (p = 0.1563) or stifle (p = 0.3862). Comparison between the fresh and frozen articular cartilage demonstrated no significant difference among the joints in the three material properties: p = 0.9418, p = 0.7031, and p = 0.9313 for the aggregate modulus, the hyperelastic material constant, and the fluid load fraction, respectively.

Funder

Auburn University

Merial-NIH

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of vitrification on mechanical properties of porcine articular cartilage;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2022-09-28

2. Hyperelastic parameter identification of human articular cartilage and substitute materials;Journal of the Mechanical Behavior of Biomedical Materials;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3