Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments

Author:

Mow V. C.1,Kuei S. C.1,Lai W. M.1,Armstrong C. G.1

Affiliation:

1. Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute, Troy, N.Y. 12181

Abstract

Articular cartilage is a biphasic material composed of a solid matrix phase (∼ 20 percent of the total tissue mass by weight) and an interstitial fluid phase (∼ 80 percent). The intrinsic mechanical properties of each phase as well as the mechanical interaction between these two phases afford the tissue its interesting rheological behavior. In this investigation, the solid matrix was assumed to be intrinsically incompressible, linearly elastic and nondissipative while the interstitial fluid was assumed to be intrinsically incompressible and nondissipative. Further, it was assumed that the only dissipation comes from the frictional drag of relative motion between the phases. However, more general constitutive equations, including a viscoelastic dissipation of the solid matrix as well as a viscous dissipation of interstitial fluid were also developed. A constant “average” permeability of the tissue was assumed, i.e., independent of deformation, and a solid content function Vs/Vf (the ratio of the volume of each of the phases) was assumed to vary with depth in accordance with the experimentally determined weight ratios. This linear, nonhomogeneous theory was applied to describe the experimentally obtained biphasic creep and biphasic stress relaxation data via a nonlinear regression technique. The determined intrinsic “aggregate” elastic modulus, from ten creep experiments, is 0.70 ± 0.09 MN/m2 and, from six stress relaxation experiments, is 0.76 ± 0.03 MN/m2. The “average” permeability of the tissue is (0.76 ± 0.42) × 10−14 m4 /N•s. We concluded that the large spread in the permeability coefficients is due to the assumption of a constant deformation independent permeability. We also concluded that 1) a nonlinearly permeable biphasic model, where the permeability function is given by an experimentally determined empirical law: k = A(p) exp [α(p)e], can be used to describe more accurately the rheological properties of articular cartilage, and 2) the frictional drag of relative motion is the most important factor governing the fluid/solid viscoelastic properties of the tissue in compression.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 1989 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3