Effect of vitrification on mechanical properties of porcine articular cartilage

Author:

He Jenny1,Wine Itai2,Wu Kezhou13,Sevick Johnathan1,Laouar Leila1,Jomha Nadr M1,Westover Lindsey4ORCID

Affiliation:

1. Department of Surgery, University of Alberta, Edmonton, AB, Canada

2. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada

3. Department of Orthopedic Surgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China

4. Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

Abstract

Articular cartilage (AC) injuries do not heal primarily and large lesions progress to degenerative osteoarthritis. Osteochondral allograft transplantation is an effective surgical treatment but is limited by the lack of donor tissue availability. Fresh allografts can be stored hypothermically up to 28–45 days after which the tissue is no longer viable for transplantation. Vitrification is a method of cryopreservation with the potential to extend the storage time of AC. A specific protocol has been demonstrated to preserve high chondrocyte viability; however, its effect on various mechanical properties of the extracellular matrix (ECM) remains unknown and is the focus of this initial study. Porcine AC was subject to a defined vitrification protocol, using fresh and frozen samples as positive and negative controls, respectively; n = 20 for all three groups. Unconfined compression testing was used to assess mechanical properties of the tissue under rapid load, stress relaxation, and equilibrium conditions. The stress relaxation time constants (modeled with a 2-term Prony series) [Formula: see text] and [Formula: see text] were significantly lower for frozen ( p = 0.014, p < 0.001) and vitrified ( p = 0.009, p = 0.003) tissue compared to fresh, with no differences between frozen and vitrified samples ( p = 0.848 and 0.105 for [Formula: see text] and [Formula: see text], respectively). These values indicate that frozen and vitrified samples relaxed more rapidly than fresh, which may suggest altered matrix composition and permeability post-treatment. These results represent the initial study in our experimental path to evaluate differences in mechanical properties of vitrified tissues.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3