Characterization of Various Channel Fields Using an Initial Ensemble Selection Schemeand Covariance Localization

Author:

Jung Hyungsik1,Jo Honggeun1,Lee Kyungbook2,Choe Jonggeun3

Affiliation:

1. Department of Energy Systems Engineering, Seoul National University, Seoul 08826, South Korea e-mail:

2. Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea e-mail:

3. Department of Energy Resources Engineering, Seoul National University, Seoul 08826, South Korea e-mail:

Abstract

Ensemble Kalman filter (EnKF) uses recursive updates for data assimilation and provides dependable uncertainty quantification. However, it requires high computing cost. On the contrary, ensemble smoother (ES) assimilates all available data simultaneously. It is simple and fast, but prone to showing two key limitations: overshooting and filter divergence. Since channel fields have non-Gaussian distributions, it is challenging to characterize them with conventional ensemble based history matching methods. In many cases, a large number of models should be employed to characterize channel fields, even if it is quite inefficient. This paper presents two novel schemes for characterizing various channel reservoirs. One is a new ensemble ranking method named initial ensemble selection scheme (IESS), which selects ensemble members based on relative errors of well oil production rates (WOPR). The other is covariance localization in ES, which uses drainage area as a localization function. The proposed method integrates these two schemes. IESS sorts initial models for ES and these selected are also utilized to calculate a localization function of ES for fast and reliable channel characterization. For comparison, four different channel fields are analyzed. A standard EnKF even using 400 models shows too large uncertainties and updated permeability fields lose channel continuity. However, the proposed method, ES with covariance localization assisted by IESS, characterizes channel fields reliably by utilizing good 50 models selected. It provides suitable uncertainty ranges with correct channel trends. In addition, the simulation time of the proposed method is only about 19% of the time required for the standard EnKF.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3