The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models

Author:

Gu Yaqing1,Oliver Dean S.1

Affiliation:

1. Mewbourne School of Petroleum and Geological Eng., The University of Oklahoma, 100 East Boyd Street, SEC T301, Norman, OK 73019

Abstract

This paper reports the use of ensemble Kalman filter (EnKF) for automatic history matching. EnKF is a Monte Carlo method, in which an ensemble of reservoir state variables are generated and kept up-to-date as data are assimilated sequentially. The uncertainty of reservoir state variables is estimated from the ensemble at any time step. Two synthetic problems are selected to investigate two primary concerns with the application of the EnKF. The first concern is whether it is possible to use a Kalman filter to make corrections to state variables in a problem for which the covariance matrix almost certainly provides a poor representation of the distribution of variables. It is tested with a one-dimensional, two-phase waterflood problem. The water saturation takes large values behind the flood front, and small values ahead of the front. The saturation distribution is bimodal and is not well modeled by the mean and variance. The second concern is the representation of the covariance via a relatively small ensemble of state vectors may be inadequate. It is tested by a two-dimensional, two-phase problem. The number of ensemble members is kept the same as for the one-dimensional problem. Hence the number of ensemble members used to create the covariance matrix is far less than the number of state variables. We conclude that EnKF can provide satisfactory history matching results while requiring less computation work than traditional history matching methods.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference19 articles.

1. Improved Rxo Measurements Through Semi-Active Focusing, SPE-28437;Eisenmann

2. Field Test Results for a Real-Time Intelligent Drilling Monitor, SPE-59227;Corser

3. Sequential Data Assimilation With a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics;Evensen;J. Geophys. Res.

4. Data Assimilation Using an Ensemble Kalman Filter Technique;Houtekamer;Mon. Weather Rev.

5. A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts;Anderson;Mon. Weather Rev.

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3