A Novel Data Assimilation-Based Real-Time State Estimation Method for Gas Influx Profiling During Riser Gas Events

Author:

Wei Chen1,Tabjula Jagadeeshwar L.2,Sharma Jyotsna3,Chen Yuanhang4

Affiliation:

1. Louisiana State University Craft & Hawkins Department of Petroleum Engineering, , 3204, Patrick F. Taylor Hall, Baton Rouge, LA 70803

2. Louisiana State University Craft & Hawkins Department of Petroleum Engineering, , 3222, Patrick F. Taylor Hall, Baton Rouge, LA 70803

3. Louisiana State University Craft & Hawkins Department of Petroleum Engineering, , 3212H, Patrick F. Taylor Hall, Baton Rouge, LA 70803

4. Louisiana State University Craft & Hawkins Department of Petroleum Engineering, , 3209C, Patrick F. Taylor Hall, Baton Rouge, LA 70803

Abstract

AbstractRiser gas events during offshore drilling operations are hazardous and challenging to control. Therefore, knowledge of the gas influx sizes and distributions in a marine drilling riser is critical for the selection of riser gas handling methods and the estimation of risks of riser gas unloading. An extended Kalman filter-based data assimilation method is developed and evaluated for the real-time estimation of gas influx rates and void fraction distributions in a riser during riser gas handling. Full-scale experiments were conducted in this study for the evaluation of the proposed data assimilation method. An offshore well, which consists of a marine drilling riser and a wellbore below the subsea blowout preventer, was simulated by a 1572-m-deep experimental well. Real-time measurement data, including surface and downhole pressures, pump rates, and liquid outflow rates, were used to estimate the downhole gas influx rates using the Kalman filter. An online calibrated drift-flux model based on data assimilation is used to estimate the distributions of void fractions in the riser over time. The measurement data from a gas flowmeter and the distributed fiber-optic sensing were used to validate the estimation results, and satisfying performance was seen from the presented method. This study proposed a novel data assimilation-based state estimation method by maximizing the use of measurement data of different types from the available managed pressure drilling systems. This method enables the more accurate estimation and prediction of gas behaviors in a riser and helps to facilitate real-time decision-making during riser gas handling.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3