Dynamic Motion of Two Elastic Half-Spaces in Relative Sliding Without Slipping

Author:

Adams George G.1

Affiliation:

1. Northeastern University, Boston, MA 02115

Abstract

Two isotropic linear elastic half-spaces of different material properties are pressed together by a uniform pressure and subjected to a constant shearing stress, both of which are applied far away from the interface. The shear stress is arbitrarily less than is required to produce slipping according to Coulomb’s friction law. Nonetheless, it is found here that the two bodies can slide with respect to each other due to the presence off a separation wave pulse in which all of the interface sticks, except for the finite-width separation-pulse region. In this type of pulse, the separation zone has a vanishing slope at its leading edge and an infinite slope at its trailing edge. Nonetheless, the order of the singularity at the trailing edge is small enough so as not to produce an energy sink. The problem is reduced to the solution of a pair of singular integral equations of the second kind which are solved numerically using a variation of the well-known method of Erdogan et al. (1973). Results are given for various material combinations and for a range of the remote shear-to-normal-stress ratio.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Buckling of an Elastic Plate/Layer Along a Rigid Base With Adhesion;Journal of Applied Mechanics;2019-12-05

2. L’Escargot Rapide: Soft Contacts at High Speeds;Tribology Letters;2014-04-18

3. Friction modeling for dynamic system simulation;Applied Mechanics Reviews;2002-10-16

4. 35 Strength and energetics of active fault zones;International Geophysics;2002

5. Friction and fracture;Nature;2001-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3