Friction modeling for dynamic system simulation

Author:

Berger EJ1

Affiliation:

1. CAE Laboratory, Department of Mechanical, Industrial, and Nuclear Engineering, University of Cincinnati, PO Box 210072, Cincinnati, OH 45221-0072

Abstract

Friction is a very complicated phenomenon arising at the contact of surfaces. Experiments indicate a functional dependence upon a large variety of parameters, including sliding speed, acceleration, critical sliding distance, temperature, normal load, humidity, surface preparation, and, of course, material combination. In many engineering applications, the success of models in predicting experimental results remains strongly sensitive to the friction model. Furthermore, a broad cross section of engineering and science disciplines have developed interesting ways of representing friction, with models originating from the fundamental mechanics areas, the system dynamics and controls fields, as well as many others. A fundamental unresolved question in system simulation remains: what is the most appropriate way to include friction in an analytical or numerical model, and what are the implications of friction model choice? This review article draws upon the vast body of literature from many diverse engineering fields and critically examines the use of various friction models under different circumstances. Special focus is given to specific topics: lumped-parameter system models (usually of low order)—use of various types of parameter dependence of friction; continuum system models—continuous interface models and their discretization; self-excited system response—steady-sliding stability, stick/slip, and friction model requirements; and forced system response—stick/slip, partial slip, and friction model requirements. The conclusion from this broad survey is that the system model and friction model are fundamentally coupled, and they cannot be chosen independently. Furthermore, the usefulness of friction model and the success of the system dynamic model rely strongly on each other. Across disciplines, it is clear that multi-scale effects can dominate performance of friction contacts, and as a result more research is needed into computational tools and approaches capable of resolving the diverse length scales present in many practical problems. There are 196 references cited in this review-article.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3