Elastic Interface Waves Involving Separation

Author:

Comninou Maria1,Dundurs J.2

Affiliation:

1. Department of Applied Mechanics and Engineering Science, University of Michigan, Ann Arbor, Mich.

2. Department of Civil Engineering, Northwestern University, Evanston, Ill.

Abstract

A bonded interface between two solids which have an appropriate mismatch in their mechanical properties can support Stoneley waves. The question investigated is whether an unbonded interface, which is unable to transmit tensile tractions, can sustain interface waves that involve localized separation. The answer is affirmative, and the following conclusions are reached: 1. The solids must be pressed together. 2. All combinations of materials can sustain interface waves involving separation. 3. The phase velocity of the interface waves is not fixed but lies within a range of values. For instance, in case of identical materials, the phase velocity may have any value falling between the velocities of Rayleigh and transverse waves (cR < c < cT). 4. The interface waves do not involve a free amplitude, and the wave form is fixed. However, the length of the separation zones remains arbitrary, so that energy can still be transmitted at greatly different rates. 5. The solids move apart in the sense of an average displacement. 6. The gaps are symmetric about the centers of the separation zones, and the interface tractions are symmetric about the centers of the contact zones. 7. The interface waves involving separation exhibit features that are similar to those encountered in dynamic fracture. The interface tractions are square-root singular at both leading and trailing ends of the gaps. The two solids pull apart at the leading ends of the gaps with infinite discontinuities in particle velocities. The solids slam together at the trailing ends with exactly the opposite velocity discontinuities.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the stability of transient bimaterial contact in the presence of dry friction and slip;International Journal of Solids and Structures;2023-08

2. Fifty years of Schallamach waves: from rubber friction to nanoscale fracture;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-08

3. Propagating Schallamach-type waves resemble interface cracks;Physical Review E;2022-04-18

4. On the transient planar contact problem in the presence of dry friction and slip;International Journal of Solids and Structures;2020-06

5. Buckling of an Elastic Plate/Layer Along a Rigid Base With Adhesion;Journal of Applied Mechanics;2019-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3