Melting and Ejecta Produced by High Velocity Microparticle Impacts of Steel on Tin

Author:

Lienhard Jasper1,Veysset David2,Nelson Keith A.3,Schuh Christopher A.1

Affiliation:

1. Department of Materials Science and Engineering, MIT, Cambridge, MA 02139

2. Institute for Soldier Nanotechnologies, MIT, Cambridge, MA 02139

3. Institute for Soldier Nanotechnologies, Department of Chemistry, MIT, Cambridge, MA 02139

Abstract

Abstract At sufficiently high velocities, a microparticle impacting a metal substrate can cause ejection of material from the substrate and impact-induced melting, both of which can result in erosion. Here, we directly image the impact of individual hard steel microparticles on soft tin substrates, at controlled impact velocities in the range of ∼100 to 1000 m/s. By using scanning electron and laser scanning confocal microscopy, we characterize the surface morphology, depth, and volume of each impact crater. We observe a gradual onset of impact-induced melting in the craters, as well as the production of increasing amounts of ejecta from the target metal. By comparing measurements of impact and rebound velocity to an elastic-plastic model, we observe that at a high enough impact velocity, melting and ejection begin to consume additional kinetic energy beyond that expected by plastic deformation of the target material alone. By calculating the excess energy dissipation using this elastic-plastic model, we show that although this divergent behavior is associated with the onset of melting, the majority of the ejected volume must be solid rather than liquid.

Funder

Basic Energy Sciences

Lawrence Livermore National Laboratory

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3