Affiliation:
1. Mechanical Engineering Department, Oakland University, 2200 N. Squirrel Road, Rochester, MI 48309 e-mail:
Abstract
A general methodology is presented for time-dependent reliability and random vibrations of nonlinear vibratory systems with random parameters excited by non-Gaussian loads. The approach is based on polynomial chaos expansion (PCE), Karhunen–Loeve (KL) expansion, and quasi Monte Carlo (QMC). The latter is used to estimate multidimensional integrals efficiently. The input random processes are first characterized using their first four moments (mean, standard deviation, skewness, and kurtosis coefficients) and a correlation structure in order to generate sample realizations (trajectories). Characterization means the development of a stochastic metamodel. The input random variables and processes are expressed in terms of independent standard normal variables in N dimensions. The N-dimensional input space is space filled with M points. The system differential equations of motion (EOM) are time integrated for each of the M points, and QMC estimates the four moments and correlation structure of the output efficiently. The proposed PCE–KL–QMC approach is then used to characterize the output process. Finally, classical MC simulation estimates the time-dependent probability of failure using the developed stochastic metamodel of the output process. The proposed methodology is demonstrated with a Duffing oscillator example under non-Gaussian load.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference28 articles.
1. Optimal Discretization of Random Fields;J. Eng. Mech.,1993
2. Orthogonal Series Expansions of Random Fields in Reliability Analysis;J. Eng. Mech.,1994
3. Stochastic Finite Element Methods and Reliability—A State of the Art Report,2000
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献