Reliability Analysis and Random Vibration of Nonlinear Systems Using the Adjoint Method and Projected Differentiation

Author:

Papadimitriou Dimitrios1,Mourelatos Zissimos P.1,Hu Zhen2

Affiliation:

1. Department of Mechanical Engineering, Oakland University, 2200 N. Squirrel Road, Rochester, MI 48309

2. Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, Dearborn, MI 48128

Abstract

Abstract This paper proposes a new methodology for time-dependent reliability and random vibrations of nonlinear vibratory systems using a combination of a time-dependent adjoint variable (AV) method and a projected differentiation (PD) method. The proposed approach is called AV-PD. The vibratory system is excited by stationary Gaussian or non-Gaussian input random processes. A Karhunen–Loeve (KL) expansion expresses each input random process in terms of standard normal random variables. The nonlinear equations of motion (EOM) are linearized using a Taylor expansion using the first-order derivatives of the output with respect to the input KL random variables. An adjoint approach obtains the output derivatives accurately and efficiently requiring the solution of as many sets of EOM as the number of outputs of interest, independently of the number of KL random variables. The proposed PD method then computes the autocorrelation function of each output process at an additional cost of solving as many sets of EOM as the number of outputs of interest, independently of the time horizon (simulation time). A time-dependent reliability analysis is finally performed using a KL expansion of the output processes and Monte Carlo simulation (MCS). The number of solutions of the EOM scales only with the number of output random processes which is commonly much smaller than the number of input KL random variables. The efficiency and accuracy of the proposed approach is demonstrated using a four degree-of-freedom (DOF) half-car vibratory problem.

Funder

Automotive Research Center

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3