A Subdomain Approach for Uncertainty Quantification of Long Time Horizon Random Processes

Author:

Mande Onkar,Mourelatos Zissimos,Papadimitriou Dimitrios

Abstract

<div class="section abstract"><div class="htmlview paragraph">This paper addresses the uncertainty quantification of time-dependent problems excited by random processes represented by Karhunen Loeve (KL) expansion. The latter expresses a random process as a series of terms involving the dominant eigenvalues and eigenfunctions of the process covariance matrix weighted by samples of uncorrelated standard normal random variables. For many engineering appli bn vb nmcations, such as random vibrations, durability or fatigue, a long-time horizon is required for meaningful results. In this case however, a large number of KL terms is needed resulting in a very high computational effort for uncertainty propagation. This paper presents a new approach to generate time trajectories (sample functions) of a random process using KL expansion, if the time horizon (duration) is much larger than the process correlation length. Because the numerical cost of KL expansion increases drastically with the size of time horizon, we partition it into multiple subdomains of equal length (time), perform a KL expansion for only the first subdomain and then extend it to the remaining subdomains by imposing a correlation between the KLE coefficients of adjacent subdomains. Additionally, to ensure continuity at the junction between subdomains, a cubic spline interpolation is implemented. The proposed approach is demonstrated using two examples.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3