Multifrequency Instability of Cavitating Inducers

Author:

Brennen Christopher E.1

Affiliation:

1. California Institute of Technology, 1201 East California Boulevard, Pasadena, CA 91125

Abstract

Recent testing of high-speed cavitating turbopump inducers has revealed the existence of more complex instabilities than the previously recognized cavitating surge and rotating cavitation. This paper explores one such instability that is uncovered by considering the effect of a downstream asymmetry, such as a volute on a rotating disturbance similar to (but not identical to) that which occurs in rotating cavitation. The analysis uncovers a new instability that may be of particular concern because it occurs at cavitation numbers well above those at which conventional surge and rotating cavitation occur. This means that it will not necessarily be avoided by the conventional strategy of maintaining a cavitation number well above the performance degradation level. The analysis considers a general surge component at an arbitrary frequency ω present in a pump rotating at frequency Ω and shows that the existence of a discharge asymmetry gives rise not only to beat components at frequencies, Ω−ω and Ω+ω (as well as higher harmonics), but also to rotating as well as surge components at all these frequencies. In addition, these interactions between the frequencies and the surge and rotating modes lead to “coupling impedances” that effect the dynamics of each of the basic frequencies. We evaluate these coupling impedances and show not only that they can be negative (and thus promote instability) but also are most negative for surge frequencies just a little below Ω. This implies potential for an instability involving the coupling of a surge mode with a frequency around 0.9Ω and a low-frequency rotating mode about 0.1Ω. We also examine how such an instability would be manifest in unsteady pressure measurements at the inlet to and discharge from a cavitating pump and establish a “footprint” for the recognition of such an instability.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3