Design Optimization of the Impeller and Volute of a Centrifugal Pump to Improve the Hydraulic Performance and Flow Stability

Author:

Shim Hyeon-Seok1,Kim Kwang-Yong1

Affiliation:

1. Department of Mechanical Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon 22212, South Korea

Abstract

Abstract Multi-objective design optimization was applied to the impeller and volute of a centrifugal pump using surrogate-based optimization techniques and three-dimensional Reynolds-averaged Navier–Stokes (RANS) analysis. The objective functions used to improve the hydraulic performance and operating stability of the pump were the hydraulic efficiency at the design condition and the flow rate at which the maximum volute pressure recovery coefficient occurs. Three design variables were selected based on the results of a sensitivity analysis: the blade outlet angle, the constants in determining the impeller outlet width, and the cross-sectional area of the volute. Using response surface approximation (RSA), surrogate models were constructed for the objective functions based on numerical results at experimental points obtained by Latin hypercube sampling (LHS). The representative Pareto-optimal solutions obtained by the multi-objective genetic algorithm (MOGA) show enhanced objective function values compared to the baseline design. The results of unsteady calculation show that the flow instability of the centrifugal pump was successfully suppressed by the optimization.

Funder

National Supercomputing Center

Publisher

ASME International

Subject

Mechanical Engineering

Reference38 articles.

1. The Stability of Pumping Systems;ASME J. Fluids Eng.,1981

2. Numerical Analysis of the Three- Dimensional Swirling Flow in Centrifugal Compressor Volutes;ASME J. Turbomach.,1994

3. Multifrequency Instability of Cavitating Inducers;ASME J. Fluids Eng.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3