Investigations on the effects of obstacles on the surfaces of blades of the centrifugal pump to suppress cavitation development

Author:

Zhao Weiguo12ORCID,Guo Bao12

Affiliation:

1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China

2. Key Laboratory of Fluid Machinery and System, Gansu Province, Lanzhou, China

Abstract

This paper proposes a new method that obstacles are attached to both the suction and pressure surfaces of the blades to suppress cavitation development. A centrifugal pump with a specific speed of 32 is selected as the physical model to perform the external characteristic and cavitation performance experiments. SST [Formula: see text] turbulence model and Zwart cavitation model were employed to simulate the unsteady cavitation flow in the pump. The results indicate that the numerical simulation results are in good agreement with the experimental counterparts. After the obstacles are arranged, the maximum head decrease is only 1.37%, and the relative maximum drop of efficiency is 1.12%. Obstacles have minimal impacts on the variations of head and efficiency under all flow rate conditions. The distribution of vapor volume in the centrifugal pump is significantly reduced after obstacles are arranged and the maximum fraction reduction is 53.6%. The amplitude of blade passing frequency decreases significantly. While obstacles decrease the intensity of turbulent kinetic energy near the wall in the impeller passages to effectively reduce the distribution of cavitation bubbles, and control the development of cavitation. After the obstacles are set, the strength of the vortex in the impeller passages is weakened significantly, the shedding of the vortex is suppressed, flow in the impeller becomes more stable.

Funder

National Key Research and Development Project

Natural Science Foundation of Gansu Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3