Effect of Clocking on the Second Stator Pressure Field of a One and a Half Stage Transonic Turbine

Author:

Gadea J.1,De´nos R.1,Paniagua G.1,Billiard N.1,Sieverding C. H.1

Affiliation:

1. von Karman Institute for Fluid Dynamics, Rhode-Saint-Gene`se, Belgium

Abstract

This paper focuses on the experimental investigation of the time-averaged and time-resolved pressure field of a second stator tested in a one and a half stage high-pressure transonic turbine. The effect of clocking and its influence on the aerodynamic and mechanical behaviour are investigated. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the first and the second stator. Pneumatic probes located upstream and downstream of the second stator provide the time-averaged component of the pressure field. For the second stator airfoil, both time-averaged and time-resolved surface static pressure fields are measured at 15, 50 and 85% span with fast response pressure transducers. Regarding the time-averaged results, the effect of clocking is mostly observed in the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, which is likely to affect the overall performance of the airfoil. The phase-locked averaging technique allows to process the time-resolved component of the data. The pressure fluctuations are attributed to the passage of pressure gradients linked to the traversing of the upstream rotor. The pattern of these fluctuations changes noticeably as a function of clocking. Finally, the time-resolved pressure distribution is integrated along the second stator surface to determine the unsteady forces applied on the vane. The magnitude of the unsteady force is very dependent on the clocking position.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3