Aerodynamic Analysis of an Innovative Low Pressure Vane Placed in an s-Shape Duct

Author:

Lavagnoli Sergio1,Yasa Tolga1,Paniagua Guillermo1,Castillon Lionel2,Duni Simone1

Affiliation:

1. von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, 1640, Belgium

2. ONERA, Meudon 92190, France

Abstract

In this paper the aerodynamics of an innovative multisplitter low pressure (LP) stator downstream of a high pressure turbine stage is presented. The stator row, located inside a swan necked diffuser, is composed of 16 large structural vanes and 48 small airfoils. The experimental characterization of the steady and unsteady flow fields was carried out in a compression tube rig under engine representative conditions. The one-and-a-half turbine stage was tested at three operating regimes by varying the pressure ratio and the rotational speed. Time-averaged and time-accurate surface pressure measurements are used to investigate the aerodynamic performance of the stator and the complex interaction mechanisms with the high pressure (HP) turbine stage. Results show that the strut blade has a strong impact on the steady and unsteady flow fields of the small vanes depending on the vane circumferential position. The time-mean pressure distributions around the airfoils show that the strut influence is significant only in the leading edge region. At off-design condition (higher rotor speed) a wide separated region is present on the strut pressure side and it affects the flow field of the adjacent vanes. A complex behavior of the unsteady surface pressures was observed. Up to four pressure peaks are identified in the time-periodic signals. The frequency analysis also shows a complex structure. The spectrum distribution depends on the vane position. The contribution of the harmonics is often larger than the fundamental frequency. The forces acting on the LP stator vanes are calculated. The results show that higher forces act on the small vanes but largest fluctuations are experienced by the strut. The load on the whole stator decreases 30% as the turbine pressure ratio is reduced by approximately 35%.

Publisher

ASME International

Subject

Mechanical Engineering

Reference36 articles.

1. Aerothermodynamic Design of Low Pressure Turbines;De la Calzada

2. Flow Development Through Inter-Turbine Diffusers;Dominy;ASME J. Turbomach.

3. Stator/Rotor Interaction in a Transonic Turbine;Giles;J. Propul. Power

4. Unsteady Flow in a Single Stage Turbine;Hilditch

5. Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage;Dénos;ASME J. Turbomach.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3