Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching

Author:

Kang Byeongcheol1,Choe Jonggeun2

Affiliation:

1. Department of Energy Systems Engineering, Seoul National University, Seoul 08826, South Korea e-mail:

2. Department of Energy Resources Engineering, Seoul National University, Seoul 08826, South Korea e-mail:

Abstract

Reservoir characterization is needed for estimating reservoir properties and forecasting production rates in a reliable manner. However, it is challenging to figure out reservoir properties of interest due to limited information. Therefore, well-designed reservoir models, which reflect characteristics of a true field, should be selected and fine-tuned. We propose a novel scheme of generating initial reservoir models by using static data and production history data available. We select representative reservoir models by projecting reservoir models onto a two-dimensional (2D) plane using principal component analysis (PCA) and calculating errors of production rates against observed data. These selected models, which will have similar geological properties with the reference, are used to regenerate models by perturbing along the boundary of the different facies. These regenerated models have all the different facies distributions but share principal characteristics based on the selected models. We compare cases using 400 ensemble members, 100 models with unbiased uniform sampling, and 100 regenerated models by the proposed method. We analyze two synthetic reservoirs with different permeability distributions: one is a typical heterogeneous reservoir and the other is a channel reservoir with a bimodal permeability distribution. Compared to the cases using all the 400 models with ensemble Kalman filter (EnKF), the simulation time is dramatically reduced to 4.7%, while the prediction quality on oil and water productions is improved. Even in the more complex reservoir case, the proposed method shows great improvements with reduced uncertainties against the other cases.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3