Efficient Prediction of SAGD Productions Using Static Factor Clustering

Author:

Lee Haeseon1,Jin Jeongwoo1,Shin Hyundon2,Choe Jonggeun3

Affiliation:

1. Department of Energy System Engineering, Seoul National University, Seoul 151-744, Korea e-mail:

2. Department of Energy Resources Engineering, Inha University, Incheon 402-751, Korea e-mail:

3. Department of Energy Resources Engineering, Seoul National University, Seoul 151-744, Korea e-mail:

Abstract

Oil sands have great amount of reserves in the world with increasing commercial productions. Prediction of reservoir performances of oil sands is challenging mainly due to long simulation time for modeling heat and fluids flows in steam assisted gravity drainage (SAGD) operations. Because of accurate modeling difficulties and limited geophysical data, it requires many simulation cases of geostatistically generated fields to cover uncertainty in reservoir modeling. Therefore, it is imperative to develop a new technique to analyze production performances efficiently and economically. This paper presents a new ranking method using a static factor that can be used for efficient prediction of oil sands production. The features vector proposed can reflect shale barrier effects in terms of shale length and relative distance from the injection well. It preprocesses area that steam chamber bypasses, and then counts steam chamber expanding an area cumulatively. K-means clustering selects a few fields for full simulation run and they will cover cumulative probability distribution function (CDF) of all the fields examined. Accuracy of the prediction is high when cluster number is more than 10 based on cases of cluster number 5, 10, and 15. This technique is applied to fields with 3%, 5%, 10%, and 15% shale fraction and all the cases allow efficient and economical predictions of oil sands productions.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3