Optical Metrology of Critical Dimensions in Large-Area Nanostructure Arrays With Complex Patterns

Author:

Sabbagh Ramin1,Stothert Alec2,Sreenivasan S. V.1,Djurdjanovic Dragan1

Affiliation:

1. The University of Texas at Austin Walker Department of Mechanical Engineering, , Austin, TX 78712

2. MathWorks , Natick, MA 01760

Abstract

AbstractIt was recently demonstrated that scatterometry-based metrology has the capability to perform high-throughput metrology on large-area nanopatterned surfaces. However, the way this approach is currently pursued requires an a priori generated library of reflectance spectra to be simulated for an exhaustive set of possible underlying critical dimensions (CDs) characterizing the measured nanopatterns. Generating this library is time consuming and can be infeasible for complex patterns characterized by a large number of CDs. This article addresses the aforementioned drawback of optical inspection of CDs of nanopatterned surfaces through the use of an inverse problem-based optimization methodology coupled with a recently introduced approach for efficient organization of the library of previously simulated reflectance spectra. Specifically, for each physically measured reflectance spectrum, the best matching simulated spectrum is sought in the initial incomplete library in order to serve as the initial guess for the inverse problem optimization process. Through that optimization process, further refinements of the best matching simulated spectra are conducted to obtain sufficiently accurate estimates of the CDs characterizing the inspected nanopattern geometries. Capabilities of the newly proposed approach are evaluated through inspection of semiconductor wafer samples with hourglass patterns characterized by eight CDs. It was observed that one can obtain significantly faster measurements of CDs compared to inspection times associated with scanning electron microscopy, while at the same time not deteriorating the corresponding Gage Repeatability and Reproducibility. In conclusion, this method enables real-time, accurate, and repeatable metrology of CDs of large-area nanostructured surfaces with complex nanopatterns.

Funder

Division of Engineering Education and Centers

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3