Affiliation:
1. Center for Medical Education, Poznan University of Medical Sciences, Poznan 61-701, Poland e-mail:
2. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada e-mail:
3. Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada e-mail:
Abstract
Bone-anchored prostheses represent a promising solution to numerous medical complications associated with conventional socket-suspended prostheses. The following technical overview was constructed for engineers and orthopedic surgeons interested in osseointegrated implants for transfemoral prosthesis-residuum interfacing. Existing osseointegrated implants comprise different biomaterial compositions (i.e., titanium alloy versus cobalt-chromium-molybdenum alloy) and mechanical designs (i.e., screw-fixated versus press-fixated devices). Perioperative systems of osseointegration surgery include preoperative assessments (i.e., alongside inclusion and exclusion criteria), intraoperative procedures, and postoperative rehabilitation (i.e., static loading and dynamic gait rehabilitation). The intraoperative procedures involve transecting and reorganizing the residual musculature, embedding the implant into the femoral intramedullary cavity, and coupling the osseointegrated implant to an external prosthesis. Postoperative clinical evaluations have demonstrated significant biomechanical, psychological, and physiological improvements in patients using bone-anchored prostheses compared to conventional socket-suspended prostheses. Nevertheless, bacterial infections surrounding the skin-implant bio-interface, often resulting from Staphylococcus aureus or other coagulase-negative staphylococci, remain a relatively frequent medical complication, which can culminate in periprosthetic osteomyelitis and/or implant extraction. The technical overview concludes with discussing the recent Food and Drug Administration humanitarian use device designations, financial analyses between bone-anchored prostheses and socket-suspended prostheses, and applications of vibrotactile osseoperception for augmenting walking and balance feedback control.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献