Energy-Efficient Actuator Design Principles for Robotic Leg Prostheses and Exoskeletons: A Review of Series Elasticity and Backdrivability

Author:

Laschowski Brokoslaw1,McPhee John1

Affiliation:

1. Department of Systems Design Engineering, University of Waterloo , Ontario N2 L 3G1, Canada

Abstract

AbstractRobotic leg prostheses and exoskeletons have traditionally been designed using highly-geared motor-transmission systems that minimally exploit the passive dynamics of human locomotion, resulting in inefficient actuators that require significant energy consumption and thus provide limited battery-powered operation or require large onboard batteries. Here we review two of the leading energy-efficient actuator design principles for legged and wearable robotic systems: series elasticity and backdrivability. As shown by inverse dynamic simulations of walking, there are periods of negative joint mechanical work that can be used to increase efficiency by recycling some of the otherwise dissipated energy using series elastic actuators and/or backdriveable actuators with energy regeneration. Series elastic actuators can improve shock tolerance during foot-ground impacts and reduce the peak power and energy consumption of the electric motor via mechanical energy storage and return. However, actuators with series elasticity tend to have lower output torque, increased mass and architecture complexity due to the added physical spring, and limited force and torque control bandwidth. High torque density motors with low-ratio transmissions, known as quasi-direct drives, can likewise achieve low output impedance and high backdrivability, allowing for safe and compliant human-robot physical interactions, in addition to energy regeneration. However, torque-dense motors tend to have higher Joule heating losses, greater motor mass and inertia, and require specialized motor drivers for real-time control. While each actuator design has advantages and drawbacks, designers should consider the energy-efficiency of robotic leg prostheses and exoskeletons during daily locomotor activities besides continuous level-ground walking.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference108 articles.

1. Lower Limb Active Prosthetic Systems–Overview;Wearable Robotics: Systems and Applications,2020

2. Review of the Actuators of Active Knee Prostheses and Their Target Design Outputs for Activities of Daily Living,2017

3. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art;IEEE Trans. Robot.,2008

4. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons;IEEE Trans. Neural Syst. Rehabil. Eng.,2017

5. The Berkeley Lower Extremity Exoskeleton;ASME J. Dyn. Syst. Meas. Control,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3