A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test

Author:

Ekkad Srinath V.1,Ou Shichuan2,Rivir Richard B.2

Affiliation:

1. Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803

2. U.S. Air Force Research Laboratory, Wright Patterson AFB, OH 45433

Abstract

In film cooling situations, there is a need to determine both local adiabatic wall temperature and heat transfer coefficient to fully assess the local heat flux into the surface. Typical film cooling situations are termed three temperature problems where the complex interaction between the jets and mainstream dictates the surface temperature. The coolant temperature is much cooler than the mainstream resulting in a mixed temperature in the film region downstream of injection. An infrared thermography technique using a transient surface temperature acquisition is described which determines both the heat transfer coefficient and film effectiveness (nondimensional adiabatic wall temperature) from a single test. Hot mainstream and cooler air injected through discrete holes are imposed suddenly on an ambient temperature surface and the wall temperature response is captured using infrared thermography. The wall temperature and the known mainstream and coolant temperatures are used to determine the two unknowns (the heat transfer coefficient and film effectiveness) at every point on the test surface. The advantage of this technique over existing techniques is the ability to obtain the information using a single transient test. Transient liquid crystal techniques have been one of the standard techniques for determining h and η for turbine film cooling for several years. Liquid crystal techniques do not account for nonuniform initial model temperatures while the transient IR technique measures the entire initial model distribution. The transient liquid crystal technique is very sensitive to the angle of illumination and view while the IR technique is not. The IR technique is more robust in being able to take measurements over a wider temperature range which improves the accuracy of h and η. The IR requires less intensive calibration than liquid crystal techniques. Results are presented for film cooling downstream of a single hole on a turbine blade leading edge model.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3