Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes

Author:

Eriksen V. L.1,Goldstein R. J.2

Affiliation:

1. Research and Development, Harrison Radiator Division, General Motors Corp., Lockport, N. Y.

2. School of Mechanical and Aerospace Engineering, University of Minnesota, Minneapolis, Minn.

Abstract

Film cooling effectiveness and heat transfer are measured downstream of injection through discrete holes into a turbulent mainstream boundary layer. Air is injected through both a single hole and a row of holes spaced at three-diameter intervals and inclined at an angle of 35 deg to the main flow. There is little difference between the heat transfer coefficient with blowing and without blowing at low blowing rates (mass flux ratios). In fact, at low blowing rates, injection is found to decrease somewhat the heat transfer coefficient from that measured without blowing. As the mass flux ratio increases past unity, the heat transfer coefficient increases especially with injection through a row of holes. The peak heat transfer is usually found at the edge of the spreading jets (i.e., between two holes). At a blowing rate near two, the lateral average of the heat transfer is as much as 27 percent higher than the heat transfer with no blowing. The increase in heat transfer is attributed to the interaction between the jets and the free stream, causing high levels of turbulence.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3