Experimental Investigation of Effusion Film Cooling on a Cylindrical Leading Edge Model

Author:

Huang I-Cheng1,Lin Kuan-Hsueh1,Huang Chih-Yung2,Liu Yao-Hsien1

Affiliation:

1. National Yang Ming Chiao Tung University Department of Mechanical Engineering, , 1001 Daxue Road, Hsinchu 300093 , Taiwan

2. National Tsing Hua University , 101, Section 2, Kuang-Fu Road, Hsinchu 300044 , Taiwan

Abstract

Abstract Effusion film cooling is effective for cooling high-temperature turbine blades because it requires less coolant and produces a more uniform temperature distribution than conventional film cooling. Effusion cooling for a cylindrical model representing the leading edge of a gas turbine blade was investigated. The experiment was performed in a low-speed wind tunnel at a Reynolds number of 100,000. Pressure-sensitive paint was used to measure the adiabatic film cooling effectiveness. Additive manufacturing was used to fabricate a porous structure on the test cylinder for effusion cooling. Both simple and compound angles were used for cooling injection. The effects of streamwise and spanwise hole spacings, turbulence intensities (1% and 8.7%), and blowing ratios (0.075, 0.15, 0.3, and 0.6) were studied at a fixed density ratio of 1. The effusion hole diameter was 0.1 cm, and the spanwise hole pitch-to-diameter ratio was either 2 or 4. Compared with conventional film cooing, effusion cooling achieved a higher cooling effectiveness and produced a better coolant coverage. Increasing the streamwise spacing noticeably reduced the cooling effectiveness for the simple-angle design due to film lift-off; the compound-angle designs thus achieved higher effectiveness. The simple-angle holes were more sensitive to changes in the mainstream turbulence intensity; increases in the turbulence intensity promoted the mixing of the coolant with the mainstream. Moreover, effusion cooling was more resistant to coolant lift-off at high blowing ratios.

Funder

Ministry of Science and Technology, Taiwan

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Leading Edge Shape on Effusion Film Cooling;ASME Journal of Heat and Mass Transfer;2024-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3