Numerical Study of Rotor–Stator Interaction of a Centrifugal Pump at Part Load With Special Emphasis on Unsteady Blade Load

Author:

Casimir Nicolas1,Zhu Xiangyuan2,Hundshagen Markus1,Ludwig Gerhard3,Skoda Romuald1

Affiliation:

1. Chair of Hydraulic Fluid Machinery, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany

2. School of Energy and Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Shaanxi Xi'an 710049, China

3. Department of Mechanical Engineering, Technische Universität Darmstadt, Otto-Berndt-Straße 2, Darmstadt 64287, Germany

Abstract

Abstract Three-dimensional (3D) unsteady Reynolds-averaged Navier–Stokes (URANS) flow simulations are conducted to investigate the highly unsteady flow field at part load operation of a centrifugal pump. By the availability of unsteady flow field measurement data in the impeller wake region, a thorough validation of the simulation method is performed. Grid independence of the results is ensured. Unsteady characteristics in terms of head and shaft power as well as transient blade loads are evaluated to assess the unsteady pump performance. Significant mis-loading of the blading is revealed when one blade passes the volute tongue and associated with the strong unsteady and 3D flow field in the impeller-volute tongue region. Negative radial velocity in the tongue region is the origin of a vortex at the blade pressure side and a subsequent pressure drop that leads to even temporally negative blade loading. The results provide a detailed insight in the complex part load flow field that might be utilized for an improved pump design. As a valuable secondary outcome, a comparison of results obtained by two widely used computational fluid dynamics (CFD) codes for pump flow simulation is provided, i.e., the commercial code ansyscfx and the branch foam-extend of the open source software openfoam. It is found that the results of both methods in terms of unsteady characteristics as well as local ensemble-averaged velocity field are consistent.

Funder

Arbeitsgemeinschaft industrieller Forschungsvereinigungen e. V.

Publisher

ASME International

Subject

Mechanical Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3