Three-Dimensional Flow Simulation by a Hybrid Two-Phase Solver for the Assessment of Liquid/Gas Transport in a Volute-Type Centrifugal Pump with Twisted Blades

Author:

Hundshagen Markus1ORCID,Rave Kevin1,Mansour Michael23ORCID,Thévenin Dominique3ORCID,Skoda Romuald1ORCID

Affiliation:

1. Chair of Hydraulic Fluid Machinery, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany

2. Department of Mechanical Power Engineering, Faculty of Engineering—Mattaria, Helwan University, Cairo 11718, Egypt

3. Laboratory of Fluid Dynamics & Technical Flows, University of Magdeburg “Otto Von Guericke”, 39106 Magdeburg, Germany

Abstract

A hybrid two-phase flow solver is proposed, based on an Euler–Euler two-fluid model with continuous blending of a Volume-of-Fluid method when phase interfaces of coherent gas pockets are to be resolved. In a preceding study on a two-dimensional bladed research pump with reduced rotational speed, the transition from bubbly flow to coherent steady gas pockets observed in optical experiments with liquid/gas flow could be well captured by the hybrid solver. In the present study, the experiments and solver validation are extended to an industrial-scale centrifugal pump with twisted three-dimensional blades and elevated design rotational speed. The solver is combined with a population balance model, and a scale-adaptive turbulence model is employed. Compared to the two-dimensional bladed pump, the transition from agglomerated bubbles flow to attached gas pockets is shifted to larger gas loading, which is well captured by the simulation. The pump head drop with increasing gas load is also reproduced, showing the hybrid solver’s validity for realistic pump operation conditions.

Funder

Federal Ministry for Economic Affairs and Climate Action

RWTH Aachen University

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3